Nov 16 16:12 1992 92-0101R Page 1

ANSI DOC NO: X3J16/92-0101R
ISO DOC NO: WG21/N0178
DATE: Nov 16, 1992

C++ Translation Limits
The Boston Proposal

Paul Stone
Perennial
paul@peren.com

Table of Contents

Introduction

Abstract

Legend and Rationale
Proposed Wording

Table of Translation Limits
Glossary with Notations
References

Introduction

At the Boston X3J16/WG21 meeting two proposals
relating to translation limits were presented for
straw vote. The first proposal was a standalone
proposal on translation limits. The second proposal,
Twofold Conformance, was a qualifier on the first
proposal but was considered premature for formal vote.
This paper is a presentation of what was presented

at Boston for formal vote, therefore the Twofold
Conformance section has been removed.

Abstract

The advocates of this proposal believe that the notion
of a portable C++ program is impossible without specification
of translation limits.

ANSI/ISO C specified translation limits for C implementations.
This C++ proposal expands on the C specification in two ways:
Individual (solo) limits specification, and
C++ specific parameters.



Nov 16 16:12 1992 92-0101R Page 2

Legend and Rationale

1. You may notice the temporary introduction of what
look like macro names, ie, NEST_COMPOQOUNDS, as abbreviations
for each item. This is only to aid in our discussion,
which may last quite a while. The names need not appear
in the Draft Document. A glossary is attached.
The numbers preceding (leftmost column) are also for the

ease of the reader, but are more subject to change than
the macro names.

2. The third column "C combo" holds the value defined for
ANSI/ISO C 2.2.4.1/5.2.4.1. These values are given
for historic reference, are not subject to debate,
and will not appear in the Draft Document. The
abbreviation "combo" stands for "combined limits" ---
the "rubber teeth" test program that contains an

instance of each of the limits within one strictly
conforming C program.

3. The fourth column "C++ combo” lists the proposed values
for the same kind of combined limits, rubber teeth test,
as defined for ANSI C, but as applied to C++.

All of these values are subject to committee scrutiny =---
we propose that they appear in the Draft Document.

The "C++ combo” values, en masse, define a

"least common denominator" of program portability.

For sake of discussion, the values shown currently mirror
the ANSI/ISO C standard, and may be too low if individual
testing is rejected by committee (see "C++ solo").

4. The fifth column "C++ solo" lists the proposed values
for separately tested translation limits.
This column is provided in order to fulfill
the second criterion of Andrew Koenig’s Dallas proposal.

The purpose of the "C++ solo” tests is twofold.

"Minima become maxima", Bjarne has observed of the

ANSI C translation limits. For instance, corporate
policy may dictate that all C programs not exceed the
translation limits (be strictly conforming programs),
for fear of non-portability. We cannot not dismiss

such a policy as being totally misguided.

"We should pick unreasonably large values for the
individual tests [C++ solo] such that an implementation
may not impose arbitrary fixed limits."

The use of the words minimum and maximum has been avoided
because it is misleading. All values shown in all
three columns should be thought of as minima.



Nov 16 16:12 1992 92-0101R Page 3

Proposed Wording

Add a new section to the Draft on Translation Limits
containing the following text:

The implementation shall be able to translate and execute

at least one program that contains one instance of every
"C++ combo” limit.

For each of the "C++ solo" limits, the implementation
shall be able to translate and execute at least one
program that contains an instance of that limit.

and including the table of translation limits that follows.
Notes about the table:
1. The column "C combo" is for reference only, and is

not part of this proposal per se.

2. The first three entries were treated as one limit by
ANSI C.



Nov 16 16:12 1992

Table of Translation Limits

Item Name

NEST_COMPOUNDS
NEST_ITERATIONS
NEST_SELECTIONS
NEST_CONDITIONAL_ INCLUSI
DECL_PTR_ADR_FNC
NEST_PAREN DECL
NEST_PAREN_EXPR
SIGNIFICANT INTERNAL
SIGNIFICANT EXTERNAL
EXTERNAL_IDENTIFIERS
BLOCK_IDENTIFIERS
MACRO_IDENTIFIERS
FUNCTION_PARAMETERS
FUNCTION_ ARGUMENTS
MACRO_PARAMETERS
MACRO_ARGUMENTS

LINE LENGTH

LITERAL LENGTH
OBJECT_SIZE
NEST_INCLUDES
CASE_LABELS

STRUCT MEMBERS
ENUM_CONSTANTS
NEST_STRUCTS

AT_EXIT FUNCTIONS

C++-specific limits:

Item Name

ALL BASES

DIRECT BASE_CLASSES
NEST_CLASSES
CLASS_MEMBERS
ABSTRACT_FUNCTIONS
CONVERSION FUNCTIONS
OVERLOADED_FUNCTIONS
OVERLOADED_CONSTRUCTORS
VIRTUAL FUNCTIONS
VIRTUAL_BASE_SUBOBJECTS
STATIC_ MEMBERS

FRIENDS
ACCESS_DECLARATIONS
MEM_INTTIALIZERS
SCOPE_QUALIFIERS

NEST EXTERNS

TEMPLATE ARGUMENTS
HANDLERS_PER_TRY_ BLOCK
EXCEPTION SPECS

92-0101R Page 4

ON 8

C++ combo

C++ solo

C++ combo

C++ solo



Nov 16 16:12 1992 92-0101R Page 5

Glossary with Notations (order of previous appearance)

NEST_COMPOUNDS

Nesting levels of compound statements.

Note: NEST COMPOUNDS, NEST_ITERATIONS & NEST_SELECTIONS

entries were treated as one limit by ANSI C.

NEST_ITERATIONS

Nesting levels of iteration control structures.
NEST_SELECTIONS

Nesting levels of selection control structures.
NEST_CONDITIONAL_INCLUSION

Nesting levels of conditional inclusion.
DECL_PTR_ADR FNC

Pointer, array, and function declarators

(in any combinations) modifying an arithmetic,

a structure, a union, or an incomplete type

in a declaration.
NEST_PAREN DECL

Nesting levels of parenthesised declarators within
a full declarator.
NEST_PAREN EXPR

Nesting levels of parenthesised expressions within
a full expression.

SIGNIFICANT INTERNAL
Significant initial characters in an internal identifier
Or macro name.

SIGNIFICANT EXTERNAL
Significant initial characters in an external identifier.

EXTERNAL_IDENTIFIERS

External identifiers in one translation unit.
BLOCK_IDENTIFIERS

Identifiers with block scope declared in one block.
MACRO_IDENTIFIERS
Macro identifiers simultaneously defined in one
translation unit.
FUNCTION_PARAMETERS
Parameters in one function definition.
FUNCTION_ARGUMENTS
Arguments in one function call.
MACRO_PARAMETERS
Parameters in one macro definition.
MACRO_ARGUMENTS
Arguments in one macro invocation.
LINE_LENGTH
Characters in a logical source line.
LITERAL LENGTH
Characters in a character string literal or wide string
literal (after concatenation).



Nov 16 16:12 1992 92-0101R Page 6

Glossary with Notations, cont.

OBJECT_SIZE
Bytes in an object (in a hosted environment only) .
NEST_INCLUDES
Nesting levels for #included files.
CASE_LABELS
Case labels for a switch statement (excluding those
for any nested switch statements).
STRUCT MEMBERS
Members in a single structure or union.
ENUM_CONSTANTS
Enumeration constants in a single enumeration.
NEST_STRUCTS
Levels of nested structure or union definitions in a
single struct-declaration-list.
AT_EXIT_FUNCTIONS
Functions registered by atexit ().
See ANSI C X3.159-1989, 4.10.4.4.
Note: This is a runtime, rather than translation, limit.

C++-specific limits:

ALL BASES

Direct and indirect base classes .

(count of edges in the inheritance graph).
DIRECT_BASE_CLASSES

Direct bases classes per class.
NEST_CLASSES

Depth of nested class definitions, ie,

class S1 { class S2 { class S3 { int i; }; }; };

Note: NEST_CLASSES may be redundant with NEST_STRUCTS.
CLASS_MEMBERS

Class members in a single class object.

Note: May be redundant with STRUCT MEMBERS.
ABSTRACT_EUNCTIONS

Abstract functions in one class.
CONVERSION_FUNCTIONS

Type conversions ‘operator T()’ in one class.
OVERLOADED_FUNCTIONS

Overloaded functions for a given name.
OVERLOADED_CONSTRUCTORS

Overloaded constructors in one class.



Nov 16 16:12 1992 92-0101R Page 7

Glossary with Notations, cont.

VIRTUAL_EUNCTIONS
Virtual functions per class.
VIRTUAL BASE SUBOBJECTS
Virtual base subobjects per class object.
STATIC_MEMBERS
Static members of one class.
FRIENDS
Friend declarations in one class.
ACCESS_DECLARATIONS
Access control declarations in one class.
MEM INITIALIZERS
mem-initializers. Initializations of base classes
or members in a constructor definition, e.g.,
T::T(O : a(l), b(2), ... { }
SCOPE_QUALIFIERS
Scope qualifications of one identifier, e.g.,
BASEl::BASE2::BASE3::id
NEST_EXTERNS

‘‘extern "lang" { }’’ nesting levels.
TEMPLATE ARGUMENTS

Template arguments in a template declaration.
HANDLERS_PER_TRY BLOCK
Handlers per try block.
EXCEPTION_ SPECS
Throw specifications on a single function declaration;
that is, the number of type-id’s in the type-id-list
of an exception-specification.



Nov 16 16:12 1992 92-0101R Page 8

References

0.

Minutes of X3J16/WG21 Boston meeting, where both straw
and formal votes were taken (and formal vote reconsidered).

Minutes of X3J16 Dallas meeting, X3J16/91-0136, pg 16-18.
Sets mandate for inclusion of translation limits.

ANSI C Definition, X3.159-1989 2.2.4.1. (ISO 9899, 5.2.4.1.)

NIST/FIPS-160 ANSI C Validation Suite, ACVS, especially
test P20031.c (aka rubber teeth).

Email traffic on env reflector, beginning with x3jl6-env-289.



